EVALUATION OF POTENTIAL DESIGNS FOR HIGH PERFORMANCE FUSION ENERGY TECHNOLOGIES

Hossam A. Gabbar1,2,*, Daniel Bondarenko2, Sayf Elgriw1, Anas Abdel Rihem1

1Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), ON, Canada
2Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), ON, Canada
*Corresponding Author: Hossam A. Gabbar, Email: Hossam.gabbar@uoit.ca, Tel: 1-905-721-8668 ext. 5497, Fax: 1-905-721-3046

Abstract—The purpose of this paper is to evaluate a variety of current Hot Fusion technologies that have either accumulated a significant amount of research and experimental data to be justifiably selected as a potential fusion device, or have exceptional theoretical breakthroughs behind their ideas to justify a design for future developmental work. Using KPI’s, and Larson’s Hot Fusion Criteria, each selected design will be reviewed and scored relative to their key performance indicators and capacity to meet the triple product parametric requirements needed in order to achieve ignition. This obvious method of evaluation has not been attempted before, and will indeed shed some objective insights on the real performance of these current approaches, without the clouded bias of those supporting particular technologies through personal preference. Engineering aspects and the key performance indicators of each device will also be provided so that both the experts and the novices to the field of Hot Fusion can compare and make their own conclusions.

Keywords: Fusion Energy Technology Assessment; Fusion Reactor Design Evaluation; KPI Modeling; Clean Energy Technologies

1. INTRODUCTION

A large variety of plasma devices intended for Fusion exist in the research and development field; however, the majority of them experience the issues of maintaining stable plasma, preventing meltdowns of crucial components, harnessing the fusion energy efficiently, preserving vacuum, and scaling down to an inexpensive configuration. As a whole, most of the Fusion devices that are currently under investigation are nowhere near the size of an internal combustion engine that belongs to a standard family car. Also, the power output from these current devices may exceed the power rating from the mentioned internal combustion engine, though, the yield is almost instantaneous and does not compare on a per volume basis [1]. For these reasons, it may appear that the pursuit of perfecting Hot Fusion reactors is futile, research efforts have been conducted for over sixty years and there are still no commercial outcomes that would compete with the oil and gas industry.

2. FUNCTIONAL MODELLING

The fusion devices are created based on the interrelationships of plasma phenomena conditions. A functional model in Figure 2 is a representation of a hypothetical fusion device. The heating source raises the plasma temperature to the desired temperature [2]. The temperature sensor is used to check the temperature of the reaction point and a controller will be necessary to control the reaction. The Y terms in Figure 2 represent the changes in temperature, coulomb forces, mass flow rate, inter particle distance (cross-section), and the plasma density.

Figure 1. Hypothetical fusion device functional model

3. LITERATURE REVIEW

In today’s pursuit of scientific research, a multitude of academic and independent research facilities around the world exist to strive and develop the solution to Hot Fusion technology. Currently, there are two primary approaches identified and pursued by the international community which hold much promise to bear fruitful result, the first is the Magnetically Assisted Confinement approach, which is largely of interest due to their ability to confine Plasma and potentially harness its energy by magnetic coupling, and the second is the Inertial Confinement approach, which seeks to aggressively compress fuel targets in a short span of time, yielding small energy bursts from the Fusion taking...
A Stellarator is similar to a Tokamak in that they both utilize the torus shape. Unlike the Tokamak, however, the Stellarator has a helically symmetric torus that uses an external coil system to generate a large axisymmetric toroidal field, a moderately sized helical field with \(\psi = n \phi \) symmetry, and a small axisymmetric vertical field. The toroidal current in the Stellarator is driven by the bootstrap effect so there is no Ohmic or externally driven currents [6]. The advantages of such a design are that the plasma operation is steady-state due to the absence of Ohmic current and other current drives. Also, there is no toroidal plasma currents, which means that there is no current-driven instabilities [7].

Despite the positive aspects of the Stellarator, the technical disadvantages still exist. For instance, the coil system required to generate the Stellarator magnetic field is quite complex, and requires a strong supporting structure because of the curved magnetic coils producing large forces. Furthermore, it is difficult to make compact Stellarator devices as well as model their plasma and magnetic fields in the device, due to the complex geometry involved [8].

3.2 Spherical Torus

A Spherical Torus (ST) is the low aspect ratio limit of the conventional Tokamak design (aspect ratio \(A = R/a \) is the ratio of the major to minor radii of the torus). The ST approach minimizes the size of a Tokamak power core by discarding components from the inner side of the plasma such as the inboard blanket or shield, inboard poloidal coil systems, and Ohmic heating solenoid [9]. The D-shaped plasma cross-section and the low aspect ratio of ST provide strong intrinsic plasma shaping and enhanced stabilizing magnetic field line curvature [10]. It is an advantageous design due to its practicality, and simple to build compact size. Also, the ST design has lower magnetic field requirements and can use non-superconducting magnets to generate magnetic fields. The classical kink instabilities and higher-order ballooning modes are strongly suppressed due to the low aspect ratio, and correspondingly the ST design is capable of operating at high beta values (ratio of plasma pressure to the magnetic pressure) [11].

However, ST designs face the lower plasma pressure in spite of higher beta, because the magnetic field drastically changes across the plasma volume. Although the ST design does not require the superconducting magnets, having them to generate strong magnetic fields for the control and limitation of the plasma pressure would be beneficial, although difficult to do, due to the small ST center. Also, the ST operation requires more secondary heating systems to drive very high toroidal currents and to maintain the plasma. It is possible to drive the toroidal current using only the bootstrap effect, but this idea is still under investigation [12].

3.3 Reverse Field Pinch (RFP) Devices

RFP is an axisymmetric toroidal confinement configuration similar to Tokamak but with very different current density and magnetic field profiles. RFP, like the Tokamak, uses both toroidal field \(B_t \) and poloidal field \(B_p \) to confine the plasma. The poloidal field is generated by the plasma current, whereas the toroidal field is generated by both the plasma current and by external coils. The RFP plasma is stabilized using a strong magnetic field shear produced by the radially varying (and decreasing) toroidal magnetic field. The toroidal magnetic field at the edge is oppositely directed to the toroidal field on axis. RFP is characterized by a low safety factor \(q < 1 \) with comparable magnetic fields in poloidal and toroidal directions [13]. The primary advantage of such design is that there is practically no beta limit, the plasma can be produced entirely through
Ohmic heating, and the superconducting magnets are not required due to lower magnetic fields. Also, RFP designs are fairly resilient against high energy neutrons, since it uses a close-fitting conducting shell to stabilize non-resonant kink modes [14].

Unfortunately, due to the low safety factor q, RFPs are also subject to higher levels of MHD instabilities which affect confinement, there are also large radial transports from magnetic fluctuations, as well as large driven currents that cannot be achieved by Ohmic heating alone nor the bootstrap effect due to physical limitations, which are required to maintain the field equilibrium. Also, even though the conducting shell is advantageous to have for preventing the non-resonant kink modes, there is the growth of resistive wall modes due to this shell [15].

3.4 Spheromak

A Spheromak is a compact, axisymmetric, toroidal configuration where the magnetic field is produced almost entirely by currents flowing in the plasma. The Spheromak is confined through the self-induced field that follows a helical path. The internal currents are nearly parallel to magnetic fields so that the forces within the spheroid are in an equilibrium state. The Spheromak has a toroidal field nearly equal to the poloidal field. There is no linkage between the SP and external coils since the toroidal field of such configuration vanishes at the boundary (i.e. the wall). The Spheromak can be generated using a coaxial source that consists of a pair of cylindrical electrodes, one inside the other. A working gas is injected between the electrodes and ionized to form a plasma which is frozen in the initial magnetic field produced by the inner electrode. The Lorentz force induced by the original field and the currents flowing in the plasma pushes the plasma away from the coaxial source into a flux converser. The fields between the source and the plasma reconnect to form an isolated Spheromak. The Spheromak can also be produced using a variety of methods like flux-core induction, combined theta-pinch and z-pinch, helical injection from a coaxial, magnetized gun, a conical Θ-pinch, and a kinked z-pinch. The uniqueness and advantage of the Spheromak is that they require small power input, there is no need for external magnets, since the SP’s are confined by their own magnetic fields, and the steady state operation of Spheromak’s is realistic without excessive expenditures. Even without the external magnetic fields, the Spheromak’s experience long confinement time, and it makes them a feasible option for fueling other plasma devices (e.g. Tokamak).

Despite all their advantages, Spheromak’s however, have a complex behavior, that is, their dynamics are hard to predict and control. The dynamo effect induced by the Spheromak produces fluctuations and turbulence, as a result, Spheromak’s are vulnerable to tilt, shift current and pressure-driven instabilities. Also, Spheromak’s are subject to external forces due to the thermal gradient between the plasma and the cold surroundings which can cause energy loss, especially in environments where convective heat transfer effects take precedence, and, Spheromak’s have low beta levels as a result of the Mercier limit [17].

3.5 Magnetic Mirrors

A magnetic mirror system is a plasma confinement device that uses magnetic coils to create a strong magnetic field at the end tips of linearly restricted plasma. The combination of two magnetic mirrors forms a magnetic bottle where the ions are reflected towards the internal linear plasma flux [1]. It is an advantageous design in that high confinement times can be achieved given that the magnetic mirrors are sufficiently powerful. Also, the plasma is magnetically confined to a space where the particle collisions are continuously occurring until the energetic threshold. Some recent investigation encourage a multi mirror reactor that may offer a possibility of having a high beta, especially in hybrid devices [18].

For some time it was hoped that the magnetic mirror idea would yield results for fusion confinement, but when the high axial end losses could not be mitigated it became more of a historical curiosity. In order to have reasonable confinement in magnetic mirror devices, the current facilities have to be fairly large and complex. The complexity of calibrating the magnetic mirrors may result in MHD instabilities if done incorrectly, or if the coils have flaws. The major MHD instabilities that have a high potential of occurring in these devices are the interchange instabilities, that is, the plasma at the mirror is usually denser than the plasma confined in the central section. As a result the plasmas may experience unstable modes such as drift cyclotron loss cone, mirror, Alfvén ion cyclotron, convective loss, and ballooning [1].

3.6 Θ-Pinches

Θ-Pinch enacts cylindrical confinement of plasma by the use of a current carrying sheet wrapped around the plasma body. Plasma is radially compressed via the instantaneous axial field B_z that induces a current in plasma in the Θ direction. The coil currents can provide uniform confinement and suppress instabilities, and the generation of plasma does not have to be via the electric discharge [1]. Despite being a convenient device to radially compress the plasma to the fusion conditions, the dimensional and energy expenditures are quite large (kilometer long devices) and questionable in terms of realism. Also, the coil in the device is pulsed, which puts up some control barriers for continuous fusion. The current carrying sheet idea is not necessarily realistic on its own, but it is possible to apply it in hybrid machines [19]. The technical issue of rapid plasma losses at end-tips (particle drifts), may require a long current-carrying sheet or alternative design approaches to either putting magnetic mirrors, plugging or curving the ends, which result in significant heat losses, and MHD instabilities. There is also the charge distribution in the sheet, that has to exceed the charge carried by the plasma or else the instabilities will become dominant. Lastly, the Θ-Pinch devices have the magnetic lines of force elongated azimuthally in the direction of the current flow which creates significant plasma distortions [20].

3.7 Z-Pinch

A Z-pinch device is composed of an anode and a cathode as two concentric cylinders. The anode has a flat end-tip surface and the cathode is a tube enclosing the anode. Z-pinch occurs as a result of high current discharge from a capacitor bank and into the anode cathode configuration. As a result of
current discharge the plasma is formed inside the inter-
cylinder space, and, as current continues to dissipate, the
plasma is propagated towards the tip of the assembly due to
increasing magnetic field. This plowshare-like propagation of
plasma is concluded at the tip of the device, where the dense
plasma sheath collapses onto a lower density plasma, thereby
enacting the effects of Alfvén waves and Ohmic heating. The
established plasma pinch lasts microseconds, at best, and
during its formation resembles a vortex centered at the tip of
the anode. Z-pinch is an unstable method of achieving
potential fusion, although, due to the instabilities, it has a
high capacity to produce high neutron yields at high currents
[21]. The high-density plasma formation at the anode tip is
not very well described by the conventional Magneto-Hydro-
Dynamic equations, hence the parallel application of the
Monte-Carlo Method is often used to model neutron yields.
Z-pinch has the advantage of being a fairly small device that
can generate very high density plasmas, and it finds itself
useful generating soft x-rays and neutrons [22]. Unfortunately, Z-pincches only work in pulsed manner due to
instantaneous discharge of the capacitor banks. The use of
electrodes results in gradual wear and consequential
contamination of plasma with impurities that make it
extremely difficult to achieve fusion. Also, the end-losses and
current-driven Rayleigh-Taylor instabilities at the anode tip
(Sausage-Instabilities) are prevalent in Z-pinch machines. On
the construction side, it was observed that in the metal walled
Z-pinch machines there is a strong cathode-to-anode
asymmetry of the discharge, and the appearance of current
leaks near insulators may be possible during pinch formations
[1].

3.8 ΩZ-Pinch Combinations

A variation of geometrical alternation in the orientation of
the plasma discharge surfaces and the magnetic coil setting a
range of different Z0-Pinch designs is possible. Hard-core,
Screw, and Belt Pinches utilize the z-pinch effect to compress
plasma radially via the self-induced currents, and the use of
inducting magnetic coils is for confining and stabilizing
plasma against kink instabilities. Due to the combinational
effect of the two pinches the helical shape of the pinch is
similar to Tokamak plasma profile. Unlike the Tokamak
however, the stability yields about twice the β, that is, the
plasma magnetic confinement is better in terms of
maintaining plasma at a steady pressure [1]. Among other
devices it is justifiable to present this hybrid device on its
own, because of its ability to out-perform the composing
devices due to its ability to be made work continuously, and
maintain high stability of plasma [23]. However, some
technical issues are transferrable from the composing
devices. The electrodes may lead to plasma contamination
due to material wear (unless electrode-less plasma induction
is used), and the end losses with the escape of high energy
ions occurs unless the ends of the device are secured with
magnetic mirrors or metallic plugs. Although the Z0-Pinch
devices can be made fairly compact, the issue pertaining to
the complex manufacturing still remains aloft. Also,
depending on the arrangement of coils and discharge
elements the error fields and the tearing modes may take
precedence [24].

3.9 Field-Reversed Configurations

A field reversed configuration (FRC) is a compact toroid configuration that contains no toroidal field. The magnetic
topology of FRC is similar to an elongated, low aspect ratio,
toroidal 0-pinch. The FRC plasma is confined by the poloidal
magnetic field generated by plasma itself. FRC plasma is
traditionally formed by the field-reversed 0 -pinch (FRTP)
method. The FRC plasma is formed inside a discharge tube
filled with a working gas. The formation process starts with
applying an axial bias field produced by a cylindrical one-
turn coil. The inductive discharge generates a pre-ionized gas
which freezes in the bias field. Afterwards, the main axial
field is reversed and a magnetic reconnection occurs between
the main field and the bias field, forming a closed magnetic
structure. Finally, the FRC plasma is compressed and heated
by further increasing the main field. Other FRC formation
methods have been introduced such as Counter-Helical
Spheromak Merging (CHSM), Rotating Magnetic Field
(RMF), and Field-Reversed Mirror Configuration (FRM)
driven by Neutral Beam Injection (NBI), Relativistic Electron
Beam (REB), and Intense Light Ion Beam (ILIB) injections
[25]. There is a significant interest in the FRC devices
because they are easy to build, small, and have a very high
beta value (~100%). Since the FRC does not have a central
electrode, there is no toroidal magnetic field and no rotational
transform, hence, the resulting topology is fairly simple
structurally as well as magnetically. Some FRCs can be used
for fuelling the hybrid fusion reactors, but due to the high
power density they are expected to yield some fusion
products during collisions between FRCs alone (given the
right confinement) [26]. The advantages of FRCs are quite appealing to motivate
some investigators to dwell further. The technical issues,
however, are also worthwhile to consider. For instance the
FRCs are vulnerable to rotational instabilities, which can be
suppressed by applying a multipolar field by external coils
with straight or helical windings. However, if the suppression
field is excessive it may engage in tearing modes during
the formation phase of FRC. Also, FRCs are vulnerable to tilt
and shift instabilities, and turbulent transport. In order to
sustain the FRCs for long time it may be required to employ
additional methods like Neutral Beam Injection (NBI), and
Radial Magnetic Field (RMF). At current date, there is no
quantitative agreement between experimental results on FRC
stability and theoretical analyses, which complicates the
prediction of the results of any future FRC experiments [27].

3.10 Inertial Confinement Devices (ICDs)

In ICD, the fuel is compressed and heated extremely fast so
it reaches fusion conditions and is burnt before it can escape.
The fuel is in solid pellet form and contains few milligrams of
a Deuterium and Tritium mixture. Hundreds of high-
energy laser beams are shot at the sphere resulting in an
explosion of the shell. Due to the opposite inertial reactions
the rest of the shell flies inward creating thermonuclear
conditions for the gaseous mixture. The imploding materials
inertia then gives leeway for the fusion to occur during the
short period of time which the plasma is kept together.
There are two methods for performing laser implosion, the direct drive and the indirect drive. With the indirect drive method the laser is focused from outside through holes onto the interior surfaces of this cavity rather than directly onto the capsule resulting in an evaporation of the inner surface of the cavity and causing a dense metal plasma to form. The laser energy is converted to X-rays and bounces around many times rather than hitting the target directly and strikes it from all directions penetrating the capsule from all sides uniformly. On the other hand the direct drive method directly fires on to the capsule [1]. To date, the ICDs have actually achieved a record in sustained fusion of deuterium and tritium on the order of tens of milliseconds. In order for this fusion reaction to generate more energy than consumed, however, the plasma must be extremely dense where it is 1000 times denser than a solid. This raises issues in the ability to store and deliver such a high energy onto a tiny target as well as the time required to change the target after each pulse. This brings the technical issues of ICDs such as its operation in a pulsed fashion due to the need to replace the fuel pellets. The fuel pellets have to be perfectly spherical or else the fusion will not take place, which adds to manufacturing costs. Also, extremely large facilities and floor space is required to operate the lasers and to achieve relatively small burst of instantaneous energy, the economic aspect does not make ICDs a feasible option to generate energy, and it is neither scalable to miniaturization at the present moment [28].

3.11 Electrostatic Confinement Fusors

The Hirsch–Farnsworth Fusor is an ion accelerator that contains an outer vacuum container, filled with fusion gas, with a negatively charged spherical inner grid. The negative high voltage is applied to the inner grid at the low plasma pressure to get Pashen arc. Near the low-pressure end of the Pashen arc region with voltages of tens of kilovolts or higher, the accretion of ions is formed in the center of the Fusor’s inner grid; this region is where the fusion between particles is intended to occur. The main idea is that fusion is driven by particle velocity, not the plasma heating. The ultimate goal is to conserve ions at the center of the device so eventually all the ions fuse.[29] The Elmore-Tuck-Watson machine was the improvement of Hirsch–Farnsworth’s Fusor by having the inner grid positively charged, thus attracting the electrons [1]. At high voltage the electron will pass through the intermittent grid, and ions at high energy will pass through to the central region to produce fusion. Such a device is capable of producing small bursts of neutrons, and can be miniaturized to produce small amounts of fusion by-products [30]. However, the amount of technical issues involved makes the Fusor not very appealing for producing steady fusion reactions, despite its scalability. To date, there has not been a case where self-sustaining fusion occurred in a Fusor due to the pulsed and unstable nature of its operation. The grids are an obstacle to the energetic ions and may become evaporated over the course of the device operation, thereby contaminating the plasma. Also, a wide variety of losses such as ion thermalization, scattering, bremsstrahlung radiation, electron cusp, acoustic-wave compression of the core, and the counter-streaming instabilities at the center of the reaction occur in Fusors. Lastly, the confined plasma can be brought together to only such extent that only minimal amount of reactions occur[31].

3.12 Polywells

A Polywell device is a cube shaped magnetic cusp electron trap that creates a virtual cathode in the center to achieve Fusion via Inertial Electrostatic Confinement. Unlike the Fusor device that relies on multiple electrostatically charged grids, the Polywell relies on accretion of electrons at the center of device and the consequential tugging of protons into the potential well. Over the course of generation of the virtual cathode, the magnetic field also confines plasma to a limited region of operation, unlike the Fusor, the energetic particles maintain about a limited region of space [32]. The advantageous aspect of a well-made Polywell device is that plasma is compressed spherically and the ions do not collide with any metallic grid; hence, there is no consequential thermal energy loss. Another advantage of the Polywell is the possibility of operating in a continuous fashion via the existence of the virtual cathode. Due to the continuous operation, the plasma heating can be achieved via the RF signals and the fuel contamination from metals can be avoided. Ideally, the particles drift along the magnetic field lines and could be confined in the center given a strong enough magnetic field, and, if needed, the auxiliary plasma injection can be used via the ion injection or spheroid plasma injection [1].

The beta of these devices is low due to the current limitations in magnetic devices, and it requires a unique balance of magnetic and electric fields in order to create a stable virtual cathode. Furthermore, the end-losses due to the leaks of high energy ions, make the confinement time be infragile balance between electric currents applied to virtual cathode generator and the injection energy. Hence, either a larger or more current demanding device is needed to avoid power losses, or the consequential price is the drop in performance due to increase in potential well [31]. Unlike the Fusor, which could be scaled to suit the demanded needs, a scaling law for the virtual cathode (electron confinement) is only applicable when electron critical flux is inside the device radius. The device geometry is critical to have a stable plasma configuration [1].

4. HPFR Parameter Evaluation

In this particular section, the evaluation of the critical parameters for the high performance Hot Fusion reactors are justified through the analysis of key performance indicators (KPI), and the capacity for each device to achieve the Larson’s Hot Fusion Criteria . The current Fusion research facilities around the world are thoroughly involved in understanding Plasma properties, thus it is not easy to facilitate the superiority of one technology over the other, since all of them are largely research oriented. Nonetheless, it is still possible to present what the researchers have highlighted to be the milestones in achieving commercial Fusion and compare that data accordingly.

To mitigate the involved discussion of physics and to gain perspective on the various devices, it is convenient to start with the KPI analysis as a starting point. Three KPI branches were identified as the economic indicator, which will highlight initial costs, operational costs, maintenance costs,
design flexibility, adaptability, and manageability, the conservation indicator, which will focus on the life cycle, material use, durability, waste generation, safety, and the quality of the fusion device, which takes into consideration the size, the complexity (i.e. Number of parts), confinement geometry, and commercial cohesiveness. By covering these KPIs it is expected that the reader will benefit from a perspective on the current status of each fusion device from a more holistic sense.

4.1 Evaluation and Comparison for Existing HPFR Designs using KPIs

The evaluation of current Fusion devices based on KPIs is fairly uneasy, and requires a lot of detective work and accounting based labor. Spending and costs are hard to track without access to the key proposals and accounting documents originally compiled by the design. However, the base figures were found as a range for specific parameters with respect to the base-line values, and thus range will be provided for the indicators in each of the four KPI branches. The design flexibility of the Fusion device is ranked on a 1 to 8 basis in regards to how well the device can adapt to the change of external power regulation and cooling components (1), alternations of the design in terms of additional diagnostics equipment that can be attached (2), dimensional alterations that can be performed via the actuators and diverters inside the reactor chamber (3), flexibility to the addition of multiple plasma sources (4), the possible alternation of plasma facing components to adjust for commercialization (5), implementation of the energy harvesting techniques on the current devices (6), simplification of the design to less than 10'000 parts (7), and lack of the exotic/toxic materials (8). The device adaptability is ranked from 1 to 8, with 1 being the most adaptive to the economy and 8 indicating lack of adaptability. This ranking is based on how many institutions are actively involved in the research of a particular device, how much is invested, what is the public and academic involvement, as well as the relevant literature outlining the commercial design advantages. Manageability is simply the minimum number of people that are directly involved in the project for its operation on site[33,34,35,36,37,38,39,40,41,42,43,44,45].

The next KPI is the conservation indicator for the different Fusion devices and it includes the life cycle, material use, durability, waste generation, and safety. The lifecycle of the devices is presented as the approximate number of years that a Fusion device has been in operation before any major or significant updates. It is worthwhile noting that the durability of any of the Fusion devices, described thus far, highly depends on the materials chosen. From the table below it becomes evident that most of the materials that are involved in the reactor design are metallic and hence can withstand high stresses and thermal expansion. However, the ability of the metals to sustain a highly confined vacuum under the standard atmospheric conditions is part of the problem. Making sure that the vacuum is pure and contamination does not take place within the Fusion reactor is vital.

Table 1. The economic indicators for the current fusion technologies.

<table>
<thead>
<tr>
<th>Device</th>
<th>Annual Operating Costs (€)</th>
<th>Annual Maintenance Costs (€)</th>
<th>Design Flexibility</th>
<th>Adaptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokamak</td>
<td>100K to 1M</td>
<td>83 to 441</td>
<td>2.2 to 4.3</td>
<td>-1</td>
</tr>
<tr>
<td>Stellarator</td>
<td>70K to 1.1M</td>
<td>16 to 41M</td>
<td>2.0 to 5.3</td>
<td>-1</td>
</tr>
<tr>
<td>Spherical Torus</td>
<td>10K to 1.1M</td>
<td>16 to 4.1M</td>
<td>2.2 to 4.3</td>
<td>-1</td>
</tr>
<tr>
<td>Magnetic Mirror</td>
<td>10K to 1.1M</td>
<td>7 to 4.1M</td>
<td>2.0 to 5.3</td>
<td>-1</td>
</tr>
<tr>
<td>P-Pinch</td>
<td>10K to 1.1M</td>
<td>7 to 4.1M</td>
<td>2.0 to 5.3</td>
<td>-1</td>
</tr>
<tr>
<td>E-Pinch</td>
<td>10K to 1.1M</td>
<td>7 to 4.1M</td>
<td>2.0 to 5.3</td>
<td>-1</td>
</tr>
<tr>
<td>LIS Pinch</td>
<td>10K to 1.1M</td>
<td>7 to 4.1M</td>
<td>2.0 to 5.3</td>
<td>-1</td>
</tr>
<tr>
<td>Material Choice</td>
<td>Stainless Steel</td>
<td>Carbon Steel</td>
<td>Steel</td>
<td>Stainless</td>
</tr>
<tr>
<td>Neutrons can cause neutron damage to the shielding, which may result in slight radioactive material contamination.</td>
<td>Neutrons can cause neutron damage to the shielding, which may result in slight radioactive material contamination.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ~ indicates close proximity but does not make the device reach the target value.

*Z-pinch and the Fusors find some use in neutron generation, hence the ~6 in design flexibility.

Factors like cleanness and purification systems are included to highlight the importance of excellent house-keeping when it comes to the dually sensitive and powerful Fusion machines.

Table 2. The conservation indicators for the current fusion technologies.

<table>
<thead>
<tr>
<th>Device</th>
<th>Life Cycle (years)</th>
<th>Material Choice</th>
<th>Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokamak</td>
<td>1.2</td>
<td>Stainless Steel</td>
<td>2-3</td>
</tr>
<tr>
<td>Stellarator</td>
<td>2-5</td>
<td>Carbon</td>
<td>2-3</td>
</tr>
<tr>
<td>Spherical Torus</td>
<td>2-5</td>
<td>Copper</td>
<td>2-3</td>
</tr>
<tr>
<td>Magnetic Mirror</td>
<td>2-5</td>
<td>Titanium</td>
<td>2-3</td>
</tr>
<tr>
<td>P-Pinch</td>
<td>2-5</td>
<td>Titanium</td>
<td>2-3</td>
</tr>
<tr>
<td>E-Pinch</td>
<td>2-5</td>
<td>Stainless Steel</td>
<td>2-3</td>
</tr>
<tr>
<td>LIS Pinch</td>
<td>Unknown</td>
<td>Stainless Steel</td>
<td>2-3</td>
</tr>
</tbody>
</table>

The final KPI is the quality of the fusion device, which again takes into consideration the size, the complexity (i.e. Number of parts), confinement geometry, and commercial cohesiveness.
4.2 Evaluation and Comparison for Existing HPFR Designs using Larson’s Hot Fusion Criteria

In order to be able to objectively assess and compare all these different hot fusion devices, it is necessary to assess the capacity of each device relative to its ability to achieve sustained fusion, or ignition. Using Larson’s Hot Fusion Criteria for D-T reactions, which states \(n_{20} \cdot T_k \cdot T_E > 6.0 \times 10^{21} \text{keV} \cdot \frac{\text{particles}}{m^3} \cdot \frac{\text{s}}{s} \), each fusion device will have its specific parameters of temperature, density and confinement time form a product which will scores relative to the basic minimum of what the criteria requires. This method assumes the most practical and objective approach available to truly assess the many different kinds of fusion devices, regardless of the design’s personal unique parameters and methods of function.

Table 4. The comparison of each device’s capacity to meet Larson’s Hot Fusion Criteria

<table>
<thead>
<tr>
<th>Device</th>
<th>Temperature</th>
<th>Density (n_e)</th>
<th>Confinement Time</th>
<th>Total Score</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokamak</td>
<td>1.5</td>
<td>1.5E+20</td>
<td>0.05</td>
<td>0.001875</td>
<td>3</td>
</tr>
<tr>
<td>Stellarator</td>
<td>1</td>
<td>5E+19</td>
<td>0.015</td>
<td>0.000792</td>
<td>4</td>
</tr>
<tr>
<td>Spherical Torus</td>
<td>4</td>
<td>1E+20</td>
<td>0.67</td>
<td>0.044667</td>
<td>2</td>
</tr>
<tr>
<td>RFP</td>
<td>20</td>
<td>9E+20</td>
<td>0.05</td>
<td>0.015</td>
<td>4</td>
</tr>
<tr>
<td>Spheromak</td>
<td>0.4</td>
<td>5E+20</td>
<td>0.0005</td>
<td>0.16E+05</td>
<td>3</td>
</tr>
<tr>
<td>Magnetic Mirrors</td>
<td>0.06</td>
<td>2.7E+18</td>
<td>0.0025</td>
<td>6.7E+06</td>
<td>1</td>
</tr>
<tr>
<td>@Pinch</td>
<td>1</td>
<td>4E+18</td>
<td>0.0031</td>
<td>19.19</td>
<td>9</td>
</tr>
<tr>
<td>PEC</td>
<td>3</td>
<td>1E+5</td>
<td>0.01</td>
<td>2.1E+16</td>
<td>10</td>
</tr>
<tr>
<td>ICF</td>
<td>20</td>
<td>1E+20</td>
<td>0.11E+07</td>
<td>1.9E+20</td>
<td>8</td>
</tr>
<tr>
<td>EFF</td>
<td>60</td>
<td>1E+16</td>
<td>0.02</td>
<td>6.7E+06</td>
<td>5</td>
</tr>
<tr>
<td>Polywell</td>
<td>20</td>
<td>2E+14</td>
<td>4.07E+07</td>
<td>7.5E+13</td>
<td>9</td>
</tr>
</tbody>
</table>

5. DISCUSSION AND FUTURE WORK

Considering the results found above, we can see that the top five reactors which scored the closest to achieving Larson’s criteria for D-T fusion are the Reversed Field Pinch, the Spherical Torus, the Tokamak, the Stellarator and the Spheromak in the respective order of first to fifth. These five devices all share two things in common, one is the geometry that they operate with, the torus, and the other is the method of confinement, which is the magnetic approach. Even though the RFP operates in a torus like shape, its approach of achieving fusion varies slightly from the other 4 in that it uses a magnetic pinch configuration. This can achieve high temperatures and densities, but also low confinement times, relative to the other toroid approaches. Although current research RFP devices haven’t achieved fusion, its performance based on the data suggests that field pinch arrangements paired with torus geometry seems to hold well as a solution to fusion, especially if the pinch can be stabilized for a longer confinement time. Other devices like the Polywell and the Fusor, which achieve theoretical temperatures of 50-80 keV, scored poorly, coming sixth and ninth respectively. This is due to the fact that although they may be able to reach high temperatures, the overall method and configuration lacks the ability to densely store and confine energy. This doesn’t mean that the electrostatic confinement method is obsolete, however, as a road to fusion, the approaches used thus far haven’t performed well, partly because of the lack of research. Inertial Confinement Devices like the one at the NIF scored relatively low as well, mostly because of the small confinement time, but has been recorded to achieve ignition, although not fully sustained. This makes it difficult to actually assess the ICD relative to the other devices, though the approach seems entirely unfeasible when the cost and scale of construction is taken into serious consideration.

It is hoped that anyone who is interested in getting involved with the fusion research understands the risks and costs associated with each specific fusion configuration. It is unlikely that either the Tokamak’s or the Stellarator’s will be possible to miniaturize in the next 20 to 30 years, in order to be feasible in terms of achieving ignition. It is likely that hybrid devices will be the outcome of current fusion research, though the miniaturization of such configurations will be the main goal in the long run. Hence, it would be highly beneficial for scientists and engineers to investigate the miniaturization of the plasma devices, diagnostics, and control options. Investigations in the field of plasmonics, plasma modelling, confinement methodologies, as well as the plasma device design methodologies will play a large role in pushing fusion technologies to the commercial level. Any scientists who are currently working on the nationally supported fusion devices are encouraged to continue pursuing the scientific research for the better understanding of plasma phenomena; it is advisable, however, to keep in mind engineering limitations and the financial constraints. The value of the fusion energy developments for the benefit of humanity is immense, and will be a historical milestone when it is made available as current coal power-plants. This makes it an attractive goal for the national and international communities, as well as private investors seeking to make a historical discovery. Nonetheless, achieving this goal is a
matter of making correct decisions for the investment of time, energy, and money to a specific fusion technology.

REFERENCES

[33] DOE FY 2015 Congressional Budget Funding by Appropriation by Site
[34] FY2015_Budget_Fusion_Energy_Sciences, pp,117-152
[37] T. Klinger, “Stellarators difficult to build? The construction of Wendelstein 7-X:”, Seminar at ITER, Max-Planck-Institut fur Plasmaphysik, 14th April, 2011
[40] http://www.iter.org/factsfigures
[42] Overview of ASDEX Upgrade Results –Development of integrated operating scenarios for ITER
[51] “Scientific Progress in Magnetic Fusion, ITER, and the Fusion Development Path” (2003), Presentation to the SLAC Colloquium
[54] P.T. Lang et al 2014 Nucl. Fusion 54 083009
[56] https://www.ipp.mpg.de/16195/asdex
[57] http://www.iter.org/factsfigures
[63] U.S. STELLARATOR PROGRAM PLAN, NATIONAL STELLARATOR PROGRAM
[64] PLANNING COMMITTEE. https://www.ipp.mpg.de/16900/wwx